Period Doubling Cascades in a Predator-Prey Model with a Scavenger

نویسندگان

  • Joseph P. Previte
  • Kathleen A. Hoffman
چکیده

The dynamics of the classic planar two-species Lotka-Volterra predator-prey model are well understood. We introduce a scavenger species, who scavenges the predator and is also a predator of the common prey. For this model, we analytically prove that all trajectories are bounded in forward time, and numerically demonstrate persistent bounded paired cascades of period-doubling orbits over a wide range of parameter values. Standard analytical and numerical techniques are used in the analysis of this model making it an ideal pedagogical tool. We include exercises and an open-ended project to promote mastery of these techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chaos in a Predator-Prey Model with an Omnivore∗†

The dynamics of the planar two-species Lotka-Volterra predator-prey model are well-understood. Onto such a predator-prey model, we introduce a third species, a scavenger of the prey. Our model allows for two scenarios, one where the scavenger is also a predator of the original prey, and one where the presence of the scavenger simply inhibits the prey. We show all trajectories are bounded in for...

متن کامل

Dynamics of an eco-epidemic model with stage structure for predator

The predator-prey model with stage structure for predator is generalized in the context of ecoepidemiology, where the prey population is infected by a microparasite and the predator completely avoids consuming the infected prey. The intraspecific competition of infected prey is considered. All the equilibria are characterized and the existence of a Hopf bifurcation at the coexistence equilibriu...

متن کامل

Stability analysis of a fractional order prey-predator system with nonmonotonic functional response

In this paper, we introduce fractional order of a planar fractional prey-predator system with a nonmonotonic functional response and anti-predator behaviour such that the adult preys can attack vulnerable predators. We analyze the existence and stability of all possible equilibria. Numerical simulations reveal that anti-predator behaviour not only makes the coexistence of the prey and predator ...

متن کامل

LIMITED GROWTH PREY MODEL AND PREDATOR MODEL USING HARVESTING

In this paper, we have proposed a study on controllability and optimal harvestingof a prey predator model and mathematical non linear formation of the equation equilibriumpoint of Routh harvest stability analysis. The problem of determining the optimal harvestpolicy is solved by invoking Pontryagin0s maximum principle dynamic optimization of theharvest policy is studied by taking the combined h...

متن کامل

Hopf bifurcation analysis of a diffusive predator-prey model with Monod-Haldane response

In this paper, we have studied the diffusive predator-prey model with Monod-Haldane functional response. The stability of the positive equilibrium and the existence of Hopf bifurcation are investigated by analyzing the distribution of eigenvalues without diffusion. We also study the spatially homogeneous and non-homogeneous periodic solutions through all parameters of the system which are spati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Review

دوره 55  شماره 

صفحات  -

تاریخ انتشار 2013